有界函数
D:定义域;N,M:常数
设解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle y=f(x),x\in D,\exists N\leqslant M,\forall x\in D,} 都有解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle N\leqslant f(x)\leqslant M} ,称f(x)是D上的有界函数,N称为f(x)的下界,M称为f(x)的上界
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \exists N,\forall x\in D,} 都有解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle N\leqslant f(x)} ,称f(x)有下界函数
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \exists M,\forall x\in D,} 都有解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle f(x)\leqslant M} ,称f(x)有上界函数
几何意义
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \exists M>0,\forall x\in D} 都有解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle |f(x)|\leqslant M\Longleftrightarrow -M\leqslant f(x)\leqslant M } 称y=f(x)在底上有界。
例1:证明解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle f(x)=\sin^{80}x-6\cos^{60} 2x} 有界
证:由f(x)的定义域为R,解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \exists x \in R}
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle |f(x)|=|\sin^{80}x-6\cos^{60}2x|}
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \leqslant |\sin^{80}x|+6|\cos^{60}2x|}
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \leqslant 1+6 }
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \leqslant 7}
例2:证明解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle f(x)=\frac{x}{1+x^2}\sin x} 有界
证:定义域是R
由解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle a^2+b^2\geqslant 2ab}
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle ab\leqslant \frac{1}{2}(a^2+b^2)}
若解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle a>0,b>0,\frac{a+b}{2}\leqslant\sqrt{ab}}
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \forall x\in R}
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle |f(x)|=\frac{|x|}{1+|x|^2}|\sin x|}
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \leqslant\frac{\frac{1}{2}(|x|^2+1)}{1+|x|^2}=\frac{1}{2}}
知f(x)在R上是有界函数
无界函数
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \forall M>0,\exists X_m\in D} ,但是|f(x)|>M,称f(x)是D上的无界函数
例3:证明解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle f(x)=\frac{1}{\sqrt{x}}} 在(0,1]上是无界函数
证解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \forall M>0} ,若要|f(x)|>M成立
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \Longleftrightarrow |\frac{1}{\sqrt x}|>M\Longleftrightarrow \frac{1}{\sqrt{x}}>M\Longleftrightarrow \frac{1}{x^2}>M^2\Longleftrightarrow 0<x<\frac{1}{M^2}\and 0<x\leqslant 1}
取解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle x=\frac{1}{(M+1)^2}\in (0,1],0<x<\frac{1}{M^2}}
有|f(x)|>M,知f(x)在(0,1]上无界
复合函数
设解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle y=f(u),u\in D(f) u=\varphi u\in R(\varphi)\and D(f)\cap R(\varphi)\neq\empty} 则称解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle y=f(\varphi (x))} 为x的复合函数 由解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle D(f)\cap R(\varphi)\neq\empty ,\exists u_0\in D(f)\cap R}
解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \Rightarrow u_0\in R(\varphi ),\exists x_0} 使u0=φ(x0) 解析失败 (带SVG或PNG备选的MathML(建议用于现代的浏览器和辅助工具):从服务器“http://test.largeq.cn/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle u_0\in D(f),u_0\in D,\exists y_0} 使y0=f(u0) ⇒y0=f(φ(x0))
x称为自变量,y称为因变量,u称为中间变量,f(u)称为外(层)函数,φ(x)称为内(层)函数